skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pinge, Shubham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The electrospray process produces micro/nanodroplets for various applications such as thin and uniform coatings, drug carriers and mass spectrometry. In this paper, we study the spray processes of viscoelastic jets using simulations and experiments. In discretized modeling, the jet is perturbed with axisymmetric instability and the growth of this instability causes the jet to break into droplets. For the experiments, a solution of polyvinyl alcohol in water is sprayed and is visualized using a high-speed camera. The droplet size distribution is studied from simulations with experiments for three spray cases: electrospray, air spray, and air-controlled electrospray. Our simulations and experiments reveal that the electric field is effective in reducing the droplet size, while air flow offers more jet break-ups and thus a larger number of droplets. As a result, air-controlled electrospray where these two driving forces are synergistically combined leads to a larger number of smaller droplets than electrospray or air spray. Finally, we applied three spray processes to obtain a deposition of sulfur/mesoporous carbon/graphene/polymer binder composites as a lithium sulfur battery cathode and demonstrated that air-controlled electrospray leads to a higher capacity and rate capability than other processes, exhibiting 800 mA h g −1 at 0.5C and 600 mA h g −1 at 2C. 
    more » « less